Relaxation dynamics of a compressible bilayer vesicle containing highly viscous fluid.
نویسندگان
چکیده
We study the relaxation dynamics of a compressible bilayer vesicle with an asymmetry in the viscosity of the inner and outer fluid medium. First we explore the stability of the vesicle free energy which includes a coupling between the membrane curvature and the local density difference between the two monolayers. Two types of instabilities are identified: a small wavelength instability and a larger wavelength instability. Considering the bulk fluid viscosity and the inter-monolayer friction as the dissipation sources, we next employ Onsager's variational principle to derive the coupled equations both for the membrane and the bulk fluid. The three relaxation modes are coupled to each other due to the bilayer and the spherical structure of the vesicle. Most importantly, a higher fluid viscosity inside the vesicle shifts the crossover mode between the bending and the slipping to a larger value. As the vesicle parameters approach the unstable regions, the relaxation dynamics is dramatically slowed down, and the corresponding mode structure changes significantly. In some limiting cases, our general result reduces to the previously obtained relaxation rates.
منابع مشابه
Numerical simulation of flow hydrodynamic around dolphin body in viscous fluid
The biomimetic and hydrodynamic study of aquatic animals is one of the most challenging computational fluid dynamics topics in recent studies due to the complexity of body geometry and the type of flow field. The movement of the aquatic body, and particularly the tail section and the corresponding movement of fluid around the body, causes an unsteady flow and requires a comprehensive study of t...
متن کاملDiffusion and velocity relaxation of a Brownian particle immersed in a viscous compressible fluid confined between two parallel plane walls.
The diffusion tensor and velocity correlation function of a Brownian particle immersed in a viscous compressible fluid confined between two parallel plane walls are calculated in point approximation. The fluid is assumed to satisfy stick boundary conditions at the walls. It is found that the velocity correlation function decays asymptotically with a negative t(-2) long-time tail due to coupling...
متن کاملDynamic analysis of submerged microscale plates: the effects of acoustic radiation and viscous dissipation.
The aim of this paper is to study the dynamic characteristics of micromechanical rectangular plates used as sensing elements in a viscous compressible fluid. A novel modelling procedure for the plate-fluid interaction problem is developed on the basis of linearized Navier-Stokes equations and no-slip conditions. Analytical expression for the fluid-loading impedance is obtained using a double Fo...
متن کاملUnexpected Dynamics in Shape Fluctuations of Bilayer Vesicles
Fluid lipid bilayers are composed of two mono-molecular sheets held together by weak van der Waals forces. Except for viscous resistance, the monolayers are free to slide relative to one another giving rise to a "hidden" degree of freedom within the composite structure.
متن کاملElectro-Thermo-Mechanical Vibration Analysis of a Foam-Core Smart Composite Cylindrical Shell Containing Fluid
In this study, free vibration of a foam-core orthotropic smart composite cylindrical shell (SCCS) filled with a non-viscous compressible fluid, subjected to combined electro-thermo-mechanical loads is investigated. Piezoelectric polymeric cylindrical shell, is made from polyvinylidene fluoride (PVDF) and reinforced by armchair double walled boron nitride nanotubes (DWBNNTs). Characteristics of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E
دوره 94 6-1 شماره
صفحات -
تاریخ انتشار 2016